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Abstract—Web shell detection has become increasingly cru-
cial with the expansion of cloud computing, where automated
malware analysis serves as a foundational approach. A key
challenge in malware detection lies in balancing the reduction
of false positives with maintaining detection accuracy amid
rapid software ecosystem evolution. Existing methods require
substantial expert intervention to mitigate false positives and
often neglect the resource-intensive measures required to address
model degradation caused by software updates. This study
introduces ASTBAR, a novel method that extracts fine-grained
AST fragments to distill benign behavioral knowledge from web-
server software. By leveraging program structure and semantic
analysis, ASTBAR generates fragment-level representations of
benign samples and employs fragment matching to identify
malware. Unlike prior techniques, ASTBAR achieves simultaneous
improvements in precision, recall, and adaptability to software
evolution. The evaluation results demonstrate that ASTBAR
achieves an F1 score of 65. 35%, outperforming the state-of-the-
art methods by 10.39%. In a 12-month industrial deployment
spanning over one million users, ASTBAR maintained a 97.63%
recall rat while reducing false positives by 700+ cases daily
(equivalent to 30 expert hours).

Index Terms—web shell, Abstract Syntax Tree, Similarity
Detection, Benign Knowledge Base

I. INTRODUCTION

Web shells are malicious scripts that enable threat actors
to compromise web servers and launch additional attacks.
These scripts, often uploaded through vulnerabilities in web
applications, allow attackers to remotely execute commands,
exfiltrate data, and manipulate compromised systems. The
presence of web shells significantly increases the risk of fur-
ther exploitation, as they can serve as a foothold for attackers
to escalate privileges, propagate malware, and conduct other
nefarious activities. In the past, many real-world websites have
fallen victim to web shell attacks. To protect websites and
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users from attackers, the first crucial step is to detect web
shells within web applications.
Alarm Fatigue. Current security tools [1]–[3] prioritize mini-
mizing false negatives to improve detection rates. However,
in industrial settings, false positives often have a greater
negative impact due to poor quality of service (QoS). Excess
false alarms lead to "alarm fatigue" [4], [5], where users
become desensitized and may ignore legitimate warnings. This
undermines trust in security tools and complicates downstream
defense strategies.
The Detection Dilemma: Precision against Practicality.
Research [6] shows that anomaly-based heuristic methods
achieve high true positive rates (98.47%) but suffer from
significant false positives (8.81%). Reducing false positives
to 0.17% drastically reduces malware detection to 37.80%,
highlighting a trade-off between precision and practicality.
This dilemma affects many contemporary techniques [7]–
[9], hindering progress in malware detection. A promising
solution is to focus on accurately identifying benign samples,
which can reduce false positives and unlock potential for
improvement.
The Shortcomings of Existing Methods. Current methods
for managing false positives, such as hash whitelisting, fail
to handle the variability of server-side source code. Simple
code modifications can alter hash values, making these mech-
anisms ineffective in evolving benign software. Advanced
techniques like code similarity analysis (e.g., Simhash [10],
Fuzzyhash [11]), machine learning, and behavior-based meth-
ods address variability but risk introducing false negatives. By
overgeneralizing benign code characteristics, these approaches
may misclassify malicious samples, reducing the effectiveness
of antivirus solutions.
Our Method. In this paper, we are the first to propose
a method that addresses the issue of false positives in
web shell detection by generating a large-scale knowledge979-8-3315-4940-4/25/$31.00 © 2025 IEEE



base. We introduce ASTBAR*, a novel approach for accu-
rately identifying benign software with enhanced general-
izability. ASTBAR breaks this dilemma by decoupling the
distillation of benign feature from malicious detection. Unlike
hash-based whitelists or coarse-grained similarity tools (e.g.,
Simhash [11]), ASTBAR ’s AST fragments capture semantic
invariants across code variants, allowing precise filtering with-
out overgeneralization. The open source code will be made
publicly available on GitHub†.
Challenges. To achieve precise benign software detection, we
address three key challenges: ➀ Dynamic nature of weakly
typed languages: Dynamic behaviors, obfuscation, and encod-
ing hinder static analysis. ➁ Continuous evolution of benign
software: New patterns require frequent updates to maintain
generalizability. ➂ Distinguishing between benign and mali-
cious scripts: The subtle nuances that distinguish benign be-
havior from web shells present a significant challenge, as they
often share syntactical or structural similarities, complicating
the task of accurate classification.
Solutions. In response to the challenges we have identified,
we have developed targeted approaches within ASTBAR: For
Challenge ➀ we utilize PHP’s Abstract Syntax Tree (AST) as
input, incorporating lightweight dynamic analysis during the
generation of the AST. This analysis is specifically designed
to decode, deobfuscate, and unravel dynamic behaviors, thus
improving the precision of our static analysis. For Chal-
lenge ➁ we have implemented a strategy of decomposing
and simplifying the structure of the AST. Furthermore, we
perform semantic recognition on the leaf nodes of the AST to
increase the generalizability of ASTBAR in various iterations
of benign software. For Challenge ➂ we employ rigorous
semantic recognition coupled with the contextual assembly of
subtrees. We also conduct similarity calculations with a high
threshold to ensure that our system can effectively differentiate
between legitimate and malicious code with a high degree of
confidence.
Result. We have deployed and validated ASTBAR in a real
world industrial environment, and the result indicates that
ASTBAR can identify benign samples with 100% precision,
delivering a remarkable recall rate of 97.63% (corresponding
to 98 million samples per day) for benign samples located in a
public cloud environment. Furthermore, on average, we have
achieved a significant reduction of up to 700 false positive
samples generated by AV engines each day.
Contributions. The main contributions are as follows:

• A large-scale measurement of SOTA web shell detection
methods. False positives in web shell detection are a rec-
ognized issue, but their extent has remained unmeasured.
This measurement reveals that false positives remain a
prevalent and significant concern.

• A novel framework, ASTBAR, that overcomes the chal-
lenges posed by false positives. Using fine-grained AST

*Abbreviation of Abstract Syntax Tree assisted Benign behAvior
Repository; BAR also indicates a realistic base

†https://github.com/IWQOS-ASTBAR/ASTBAR

1 <?php
2 class Shell {
3 public static $shell="hello world!!!";
4 }
5 $reflectionClass = new ReflectionClass($_GET["

class"]);
6 $reflectionClass->getProperty("shell")->setValue(

$_GET["val"]);
7 eval(Shell::$shell);
8 ?>

Listing 1: The web shell example.

1 if (!isset($_GET['stateID'])) {
2 throw new Class('Missing.');
3 }
4 $state = Class::loadState($_GET['stateID'], Class

::STAGE_INIT);
5 if (!isset($_GET['ticket'])) {
6 throw new Class('Missing.');
7 }
8 $state['cas:ticket'] = (string)$_GET['ticket'];
9 assert('array_key_exists(Class::AUTHID,$state)');

10 $sourceId = $state[Class::AUTHID];
11 $source = Class::getById($sourceId);
12 if ($source === NULL) {
13 throw new Exception('string' . $sourceId)

;
14 }

Listing 2: The benign software example.

fragments, it is used to develop a method to detect source
code similarity. When applied to the identification of
benign web-server software, our approach leads to the
first creation of a large-scale benign knowledge base.

• The rigorous evaluation of ASTBAR using a laboratory
dataset. The preliminary results show that at an equiv-
alent similarity threshold, ASTBAR exceeds the SOTA
technique by a margin of 10. 39% in the recall, achieving
an F1 score of 65.35%.

• The successful deployment of ASTBAR in a real-world in-
dustrial environment with more than one million users for
a continuous 12-month period. Data from this deployment
indicates a consistent recall rate of around 97.63%, with
no instances of false positives. Furthermore, ASTBAR
has helped AV engines address an average of 700 false
positive samples per day, resulting in a daily workload
reduction of around 30 expert hours. This significant
decrease mitigates the risk of alarm fatigue.

II. MOTIVATION AND PROBLEM SCOPE

In this section, we present examples of both false positives
and true positives, describe the threat model, and delineate the
scope of our research to clarify the problem addressed.

A. Discriminating False Positives from True Positives

True Positive Example. Listing 1 shows a web shell example
using PHP’s tainted execution flow. The code uses Reflection
to manipulate the properties of the class and the eval() function
to execute arbitrary code. The $shell property is dynamically
modified via user-controlled input through Reflection, and
eval() executes its content. This interaction between Reflection



TABLE I: The detail of motivation examples.
ID Sample MD5 Ground Truth ML White Score Prediction Label
1 9da618e1a25a0df53a1f1ff7185360b5 surgical web shell 54.2 Benign
2 9b68cfb1e2e0bf6e8e2bd88f274427f5 web shell 0.7 Malware
3 70f9ce36590bae2e38436be52e8fed29 web shell 60.3 Benign

339 ...
340 $lang['viewDocTip10']='string_340';
341 $lang['viewDocTip11']='string_341';
342 $lang['viewDocTip12']='string_342';
343 $lang['hdapiPlugin1']='string_343';
344 $lang['hdapiPlugin2']='string_344';
345 @preg_replace("/[email]/e",$_POST['email'],"error

");
346 $lang['hdapiPlugin3']='string_345';
347 ...

Listing 3: The surgical web shell example.

and eval() enables remote code execution. Tainted data flows
from user input (line 6) to the execution sink (line 7), forming
a malicious chain.
False Positive Example. As demonstrated in Listing 2, we
encounter a false positive instance pertinent to the tainted
execution. This false positive arises due to the assignment
of the ‘$state’ variable with an external GET parameter at
lines 4 and 8. Subsequently, the assert function is called
at line 9 with a string argument that includes the ‘$state’
variable, triggering the false positive. However, the parameter
is subjected to validation by the array_key_exists function,
which merely returns a Boolean value and does not directly
echo external input. Hence, this exemplifies a classic case of
taint overpropagation.

Observation: In the context of large-scale business code-
bases, complex functionality implementation frequently
results in excessive propagation of taint when using
taint analysis methods. This phenomenon can lead to a
higher rate of false positives, highlighting the challenges
faced by AV engines in terms of achieving meaningful
improvements.

B. Motivation

In Table I, we show three malware samples, detailing their
MD5 hashes, the ground truth status of each sample, and
their respective machine learning (ML) prediction scores. The
first two examples differ considerably in that Sample 2 is
derived from Sample 1, containing only the code fragments
indicative of the malicious activities identified in Sample 1. In
contrast, sample 1 includes a considerable amount of benign
characteristics; its code is displayed in the list 3. Sample
3 represents the true positive instance previously discussed.
To assess the benign identification capability of the machine
learning method, we trained it using a fixed set of benign
samples and then predicted whether the three aforementioned
samples would be classified as benign. The results reveal that
the machine learning approach was misled by the abundant
benign features in Sample 1, leading to misclassification. In the
case of Sample 3, the model also made an incorrect judgment,

as it was an unknown sample not encountered during training.

Observation: The prevalent presence of benign code
obscures inherently sparse malicious behavior, and the
presence of unfamiliar malware samples never before
seen may lead to misclassification by machine learn-
ing models. This reflects a fundamental limitation of
machine learning in classifying non-exhaustive datasets,
where the balance must be struck between false negatives
(FN) and false positives (FP). The effectiveness of such
models is heavily dependent on the comprehensiveness
of data collection, which underscores the unreliability of
machine learning as a standalone method for accurate
identification of benign software.

Summary. In pursuit of a method that can accurately identify
benign software, we focus on a controlled generalization
within a known scope. Specifically, we employ the strategy
of creating a benign knowledge base against which we com-
pare test samples for similarity. This approach enables us to
delineate the recognition boundaries effectively.

C. Threat Model

As shown in Figure 1, we assume that attackers can create
custom PHP files (including web shells and benign software)
and upload them to server through various means, such as
exploiting weak or default credentials and using vulnera-
bilities, among others. Regarding defenders, we make the
following assumptions: ➀ The web server employs a real-time
AV engine for malware detection and prevention. ➁ Website
administrators actively manage and respond to AV alarms.

Based on these assumptions, attackers manipulate AV detec-
tion by generating benign samples that cause false positives.
The overload of false alarms strains administrators, undermin-
ing their trust in the AV system. Consequently, attackers get
the opportunity to upload malware undetected.

Fig. 1: Threat model of ASTBAR.

D. Problem Scope

The following list contrasts different aspects of our work with
other research in the area to draw a clear scope.

1) Fundamental Problem. Our work aims to solve the
minimization of false positives in web shell detection
to alleviate alarm fatigue among analysts [12] while
ensuring that malicious activities are not overlooked.



2) Target Language. According to the investigation [13],
PHP is used as a programming language in 76.80% of
the server websites. Therefore, due to the prevalence of
PHP as the current mainstream language, we pay more
attention to software related to PHP.

3) Application Scenario. Our attention is focused on the
predicaments encountered by cloud service providers in
real-world settings. The vast amount of files, the diverse
range of customers’ business operations, and the variable
security expertise among the developers utilizing cloud
services, all intensify the dilemma.

4) General Analysis Infrastructure. ASTBAR aims to
provide an automated analysis of code similarity results
based on seed samples. Although this paper focuses
mainly on the scenario of web shell detection, it does not
imply that ASTBAR cannot be applied to other scenarios.

III. SYSTEM DESIGN

In this section, we introduce the design of ASTBAR to
illustrate how we precisely characterize benign features from a
program analysis perspective. In III-A, we introduce the entire
workflow of ASTBAR, while III-B∼III-E provides detailed
explanations of each module within ASTBAR. Finally, in III-F,
we discussed how ASTBAR is applied in malware detection.

A. Overview

The general workflow of ASTBAR is shown in Figure 2. The
input of ASTBAR consists of non-encrypted benign script files,
such as WordPress [14], Symfony [15], and other benign CMS
files. Specifically, there are five steps in the process:

Fig. 2: Overall framework of ASTBAR.

• AST generation. First, we build a seed sample li-
brary composed of benign samples obtained from public
sources such as GitHub. Then, we use the corresponding
language’s compilation and parsing engine (e.g., Zend for
PHP) to parse the raw AST of each sample. Compared
to the original code, using an intermediate language as
input enables a better analysis of the code features ex-
pressed by the samples, while ignoring the minor textual
characteristics present in the original samples.

• AST split. We heuristically split the optimized AST
into minimal units of subtrees leveraging key nodes in
the programming language, such as IF, WHILE, and
STMT_LIST.

• Node normalization. We recursively extract the nodes
of split subtrees and normalize their specific values to
type vocabulary present in the codebase. Subsequently,
we perform pattern handling within the subtree nodes
(e.g., filtering repeated variables and values within an
array). This approach reduces the size and improves the
generalization of the generated feature library.

• AST fragments generation. Assisted by the N-gram
algorithm, we gather contextual information from the
current subtree to form AST fragments. The value of N
is not fixed and can be flexibly adjusted based on the
specific requirements of the application scenario.

• Similarity detection. We use a customized metric to
calculate the similarity between the test samples and
the seed sample library. When the similarity is 1.0, we
consider that ASTBAR has identified the sample.

B. AST Generation

To obtain the AST during the compilation process of PHP
samples, we created and registered an interactive custom
extension within the Zend Engine. In this extension module,
we defined and registered extension functions for parsing
PHP code into AST. Finally, within the registered extension
functions, we utilized the APIs from the Zend Engine to
generate and retrieve the AST of the parsed PHP code.

To generate a more optimized AST, we have improved
the Zend engine. These improvements incorporate common
optimization techniques and strategies used in compilers.
Specifically, the following optimizations have been performed:

➀Constant folding and propagation: During compilation,
we analyze and evaluate constant expressions, propagating
the constant values to the locations where the variable is
used. This simplifies complex expressions and transforms them
into equivalent but simpler forms, which facilitates subsequent
static program analysis.

➁Data structure optimization: Special emphasis has been
placed on optimizing array and string dimension operations.
By obtaining dimension results at compile-time and replacing
relevant function calls, we can optimize operations such as
access, traversal, and slicing, reducing the complexity of the
original AST.

➂Function call optimization: We have collected and main-
tained a set of built-in encoding functions in the PHP language,
such as base64_decode and str_rot13. When encountering
these functions, we attempt to execute the corresponding
internal functions and replace the function calls in the original
AST with the computed results. This introduces a lightweight
form of dynamic analysis logic, enhancing subsequent static
program analysis.

These optimizations aim to improve the efficiency and
simplicity of the generated AST, enabling more effective static
program analysis.

C. AST Split

Building on our in-depth study of the program itself and
the concepts of corresponding nodes [16] in the AST, we



have designed an intelligent subtree segmentation algorithm
for AST based on a heuristic approach. By conducting a
detailed analysis of the program’s structure and syntax, we
identified nodes that can be further recursively traversed and
those that do not require recursive exploration. Based on this
foundation, we employ a heuristic algorithm to determine
whether the currently traversed node belongs to the recursive
node types, thus achieving intelligent subtree segmentation and
accomplishing statement alignment between the AST subtree
and the source code.

Referring to Algorithm 1, the algorithm leverages the pro-
gram’s structural and syntactic information and applies the
principles of heuristic algorithms to guide subtree partitioning.
We defined a recursive node list based on experience and rules,
which includes specific node types that require further recur-
sive traversal, such as ‘IF’, ‘FOR’, ‘WHILE’, ‘FUNCTION’
and other nodes with complex structures. For these node types,
we recursively traverse their child nodes and analyze them as
new inputs.

In addition to the node types in the recursive list, we also
designed specific handling logic for other special node types.
For example, for ‘RETURN’ and ‘ARRAY_ELEM’ nodes, we
first examine their child nodes and determine if the child
node is of type ‘ARRAY’. If it is, we continue recursively
traversing the child node’s child nodes; if not, we add the
node to the result list. For uncovered node types, we directly
add them to the result list. Through this heuristic-based intel-
ligent subtree segmentation algorithm, we can automatically
determine which nodes need further in-depth analysis based
on the program’s structural and syntactic information, thereby
improving the efficiency and accuracy of program analysis.

Algorithm 1: Heuristic subtree decomposition

Input: inputAst, node← []
Output: the subtree of the AST

1 if isCompositeNode(inputAst[’name’]) then
2 for SubTree ∈ inputAst[’children’] do
3 SplitTree(SubTree, node)
4 end
5 else if isLoopNode(inputAst[’name’]) ||

isExceptionNode(inputAst[’name’]) then
6 node.append(inputAst)
7 for SubTree ∈ inputAst[’children’][-1:] do
8 SPLITTREE(SubTree, node)
9 end

10 else if isReturnNode(input[’name’]) && len(inputAst[’children’]) ≥
1 then

11 if isArrayNode(inputAst[’children’][0][’name’]) then
12 SPLITTREE(isArrayNode(inputAst[’children’][0], node)
13 else
14 node.append(inputAst)
15 end
16 else if isArrayNode(input[’name’]) && len(inputAst[’children’]) ≥

1 then
17 if isArrayNode(inputAst[’children’][0][’name’]) then
18 SPLITTREE(isArrayNode(inputAst[’children’][0], node)
19 else
20 node.append(inputAst)
21 end
22 else
23 node.append(inputAst)
24 end
25 return node

D. Node Normalization

We perform a depth-first search on the generated subtrees,
traversing their node names, and normalizing the node names
for representation. Specifically, we use an expert-based node
normalization algorithm that achieves normalization by han-
dling two aspects of the clauses. Firstly, we expertly normalize
the specific values of nodes into types. Secondly, we streamline
the structure of the subtree by filtering out similar patterns.
Node Normalization. We determine the semantic types of
nodes based on their value characteristics and pattern match-
ing. Partial node normalization is described in Table II.
Specifically, we identify and process the incoming tainted data.
In web shell, externally supplied tainted data is often used
for executing arbitrary commands. Based on experience, we
classify certain commonly encountered tainted data, such as
‘_POST’, ‘_GET’, ‘_REQUEST’, as tainted types to indicate
potentially malicious. For node values starting with ‘http’ or
‘https’, we further consider cases where they do not include
‘href=’ to exclude normal script samples that contain links. We
classify such node values as possibly malicious C2 addresses.
This is because, in web shell scenarios, attackers often use
such addresses to store other malicious payloads.

TABLE II: The detail of the partial node normalization.

Categories Parameters Type Instance

File
Image Type File jpg/ico/jpeg/png

Code File php
Default File html...

Network
Local Net 127.0.0.1

localhost

Threat Domain www.blackSEO.com
221.226.65.138

Special Strings

Spot _POST, _GET, _SERVER, _REQUEST...
php//input

Function Names

preg_replace_callback
require_once
proc_open
unserialize

Exec Model /ies

Exec Code <?php eval("xxx")
<%

Close Symbol ?>

Shell Command

bash sh /www/mal.sh
iptables iptables -A INPUT -s <ip> -j ACCEPT

curl nohup curl <url> &
ping ping <ip>

Database mysql -e "SELECT * FROM <table_name>"

Default Type

Alpha a-z,A-Z
Number 0-9

Longer Parm the length of parameter >200
Shorter Parm the length of parameter ∈ (2, 200]

Drop the length of parameter <2

File Extension. Web server malware often conceals malicious
payloads within image files like ’.jpg’, ’.png’, ’.ico’, etc., and
executes them using functions like ’include’ or ’require’. We
categorize files based on their file extensions for processing.
Dangerous Function. We have collected a large library of
dangerous function invocations based on expert knowledge to
highlight the functions called in script-like samples and their
parameter representations.
Shell Command. Additionally, we identify and categorize
specific commands and statements. For node values starting
with ‘sudo’, we determine their command types based on
the subsequent content, such as “iptables", “bash" and
so on. We also recognize certain common commands, such as



‘ping’, ‘cd’, and ‘chmod’, and classify them as correspond-
ing command types.
Subtree Structure Simplification. It is the process of recur-
sively exploring within subtrees and defining structurally iden-
tical or similar substructures as program patterns. Automating
the removal of the same patterns within subtrees enhances the
generality of matching.

E. AST Fragments Generation

To enhance the reliability of AST fragments, we gener-
ate fragments by incorporating contextual information based
on the current subtree. We considered employing both the
N-Gram algorithm and the Basic Block algorithm [17] to
generate fragments, conducting experiments to evaluate the
performance of each. Ultimately, we opted for the N-Gram
algorithm. In theory, for the same set of seed samples, a
higher value of N results in lower recall but more reliable
matched samples, and vice versa. Therefore, the choice of N
depends on the specific detection scenario. In scenarios where
reliability is paramount, such as when ASTBAR is used to
reduce false positives in AV engines, ASTBAR’s discrimination
takes precedence. In such cases, we recommend setting N to
a higher value, such as 3. In scenarios where reliability is less
critical, such as code similarity detection, to ensure maximum
recall, we suggest setting N to 1.

F. Precision Malware Detection

Similarity Detection. ASTBAR generates all AST fragments
based on a set of seed samples that must be detected, as
described in the above steps. We refer to the collection of all
AST fragments as the knowledge base. During the prediction
phase, we calculate the similarity between the test sample and
the knowledge base to determine whether it will be recalled
by ASTBAR. The similarity formula is a modified Jaccard
similarity, as described in Equation 1. Specifically, in this
formula, the numerator represents the number of common
elements between the test sample and the knowledge base,
while the denominator represents the total number of AST
fragments that can be extracted from the test sample. If the
similarity is 1.0, it indicates that all AST fragments in the test
sample are present in the knowledge base generated from the
seed samples.

Similarity(Base, T ) =
len(Base ∩ T )

len(T )
(1)

It is worth noting that due to the particular characteristics
of PHP samples, where a large portion of them are data
configuration files without any invocation sequences, these
samples are not within the potential suspects for AV engines.
Therefore, ASTBAR specifically recalls these samples. It does
so by employing a similarity calculation based on node types.
A predefined, controllable list of node types (excluding CALL
nodes) is set up, and the similarity between these node type
lists is computed against the node type list of the test sample.
Samples with a similarity score of 1.0 are recalled.

Collaborative Work. Upon the readiness of the benign knowl-
edge base, ASTBAR can commence working in conjunction
with all AV engines. When ASTBAR identifies the test sample
as benign, the output of AV engines becomes irrelevant. Only
when ASTBAR fails to recognize the sample as benign, do we
only consider the output of the AV engines.

IV. COMPREHENSIVE EVALUATION

In this section, we conducted experiments to evaluate
ASTBAR. Specifically, our objective was to address several
research questions (RQs) related to ASTBAR and to provide
the corresponding answers.

• RQ1: What are the current false positive rates of SOTA
web shell detection systems?

• RQ2: Does ASTBAR outperform SOTA code clone detec-
tion tools in the task of identifying benign software?

• RQ3: How does ASTBAR perform in the real world?
• RQ4: How Do Existing AV Engines Introduce False

Positives?

A. Experimental Settings

1) Dataset: To assess the aforementioned issues, we
meticulously curated a large-scale dataset comprising well-
annotated samples of malicious and benign software. The
benign software primarily originated from popular Content
Management Systems (CMS), such as WordPress, ThinkPHP,
and Symfony, which were scraped from GitHub. After a rigor-
ous deduplication process, a total of 132,333 benign samples
were obtained. The malicious samples were predominantly
sourced from a cloud computing company, representing real-
world industrial samples. This malicious subset encompassed
various categories, including highly adversarial samples, sur-
gical malware samples, and different malware families. After
removal of duplicates, a total of 50,063 malicious samples
were included in the dataset. To the best of our knowledge,
this dataset represents the largest repository available in the
academic community for the server-side malware evaluation.

2) Implementation: We implemented the entire ASTBAR
toolset with C++ and Python. The optimization and modifi-
cation of the Zend engine were carried out in C++, while
all AST-related operations were performed in Python. After
AST fragment generation, we compute the MD5 value for each
fragment and store it in a Redis database. This approach offers
several advantages. Firstly, the length of a 32-bit string is much
smaller compared to the length of an AST fragment, resulting
in significant storage space savings. Secondly, loading the
Redis database does not require a large amount of memory.
This is especially beneficial when compared to loading a
massive knowledge base into memory, as it helps optimize
the performance of the ASTBAR. Most importantly, the use
of MD5 hashes to represent AST fragments significantly
enhances the security of our benign knowledge base. In case
of leakage, these hashes prevent the reconstruction of the
original data, thwarting any potential adversary’s attempt to
craft targeted attacks or evasion strategies from the knowledge
base.



B. RQ1: Severity of False Positives.

We evaluated false positives and recall of web shell detec-
tion tools using the complete dataset to assess the prevalence
of this issue. Following the MalMax [7] evaluation method,
we collected six widely used malicious software detection
tools (both open source and proprietary) as benchmarks for
comparison. Firstly, PHP-Malware-Finder [18] is primarily
used for deobfuscation and then identifies malicious software
using Yara [19]. Secondly, BackdoorMan is an open source
Python toolkit [20] designed to detect malicious PHP scripts.
Decodes obfuscated PHP code and identifies malicious be-
haviors. Third, PHP-malware-scanner is an open source PHP
toolkit [21] that detects potential malicious samples using rules
of text and regular expression. Fourth, ClamAV is an open
source AV software [22]. Fifth, we used CloudWalker [23], a
malware detection tool based on a combination of static and
dynamic analysis. Lastly, ShellSweep [24] is an open-source
tool to detect web shells based on entropy detection.

TABLE III: Metrics of different malware detection methods.
Method # FP FPR # TP Recall Support Whitelist

PHP-malware-finder 1,184 0.89% 34,781 69.47% ✔
BackdoorMan 12,515 9.46% 47,528 94.40% ✗

PHP-malware-scanner 282 0.21% 17,517 34.99% ✔
ClamAV 6 0.00% 2,300 4.59% ✔

CloudWalker 883 0.67% 20,727 41.40% ✔
ShellSweep 128,497 97.10% 48,412 96.70% ✔

Measurement Results. As outlined in Table III, ShellSweep
exhibits the highest recall rate among all methods. However,
it registers an astronomical false positive count of 128,497,
leading to a false positive ratio of 97.10%. This may be
attributed to the default entropy threshold for detection being
set too low. In contrast, ClamAV has the lowest false positive
rate. Based on its recall rate results, it is presumed that
ClamAV’s focus may be on binary malware detection rather
than web shell detection. At the same time, BackdoorMan and
PHP-malware-finder both show relatively higher FPR values
at 9.46% and 0.89% respectively. In terms of the false positive
rate metric, none of the methods, except for ClamAV which
does not apply to web shell detection, meet the standards
commonly employed by industrial detection engines.
Whitelist Mechanism. According to our investigation, it ap-
pears that all AV methods except BackdoorMan incorporate an
internal whitelist mechanism to reduce false positives without
compromising recall rates. This suggests that the industry
generally believes in the potential of this mechanism. However,
the absence of an effective benign sample recognition method
still leads to a relatively high false positive rate.

Summary. ➀The challenge of false positives remains
significant and a false positive rate exceeding one in ten
thousand is deemed unacceptable by the industry. ➁The
industry widely acknowledges that whitelist mechanisms
can address the false positive issue. However, there is
no reliable and effective method for identifying benign
samples and is still reliant on naive hash-based methods.

C. RQ2: Performance comparison in benign identification.

TABLE IV: Summary of training and testing datasets.
Question Category # Training # Testing # Total

RQ1 Benign 25,452 106,881 132,333

RQ2
Benign 25,452 106,881 132,333

Malware 0 50,063 50,063
Total 25,452 156,944 182,396

To assess the collaborative potential of ASTBAR with cutting-
edge SOTA methods to minimize false positives from AV
engines, ShellSweep, the tool that exhibite the highest false
positive rate, was selected as the baseline. We investigated
the degree to which various benign software identification
tools could amplify ShellSweep’s efficacy. To this end, we
utilized older version samples of three widely-used content
management systems, Symfony, WordPress, and ThinkPHP as
our training dataset. The rest of the samples were assigned
to the test set, which is detailed in Table IV. It is important
to note that the training set was devoid of malicious samples,
and the incorporation of malicious software into the testing
set served specifically to evaluate whether it would lead to an
increase in false negatives from the ShellSweep methods.

• PHPCPD [25]: A PHP project can utilize a specialized
tool, namely a Copy/Paste Detector (CPD), to obtain
detailed information regarding duplicated lines within the
codebase.

• NiCad [26]: A software clone detection tool that uses
TXL parser to compute the similarity of text.

• JSCPD [27]: A detector for copy/paste instances in
programming source code, supporting over 150 formats.

• Tamer [28]: A fine-grained, tree-based tool that employs
block-based splitting of abstract syntax trees to detect
syntactic code clones. We replicated Tamer and adapted
its target language to PHP.

• ASTBAR: We distinguish between two modes of ASTBAR:
a strict mode denoted as SM, which uses a value of 3 for
N, and a lenient mode, denoted as LM, which uses a
value of 1 for N.

The experimental results, detailed in Table V, show that
the original F1 score of the ShellSweep method was 47.96%.
When various benign software identification methods were
applied in conjunction with ShellSweep, all approaches, with
the sole exception of JSCPD, registered increases in their F1
scores to varying degrees. Among them, the impact of the
JSCPD method was more negative than positive, leading to
a decrease in the F1 score. The PHPCPD method achieved a
marginal increase, boosting the F1 score by only 0.83%. The
Nicad method, with a similarity threshold of 0.8, improved
the F1 score by 1.04%. Tamer showed a more substantial
increase, enhancing the F1 score by 7.00% at the same
similarity threshold. Our ASTBAR method, in its lenient mode,
significantly raised the F1 score by 17.39%, clearly surpassing
the SOTA methods. In particular, all methods introduced false
negatives to the AV engine, except the strict mode of ASTBAR,
which did not have this issue and also possessed the highest



F1 score among all methods, excluding the lenient mode of
ASTBAR.

Summary. ➀In the comparative experiments for RQ2,
ASTBAR achieves both high recall and high precision,
a level of performance that other SOTA methods can-
not match. ➁As anticipated, increasing the value of N
used for fragment generation improves the precision of
ASTBAR. This enhancement is achieved with minimal
sacrifice in the benign software recall rate.

D. RQ3: Evaluation against Real-World Systems.

To validate the performance of ASTBAR in a real world
setting, we enhanced our dataset with approximately 10 mil-
lion genuine benign samples from the public cloud, thus
establishing a substantial benign knowledge base. Our analysis
involved monitoring authorized public cloud data from a cloud
computing company (anonymous) over an extended period of
12 months. To more accurately capture the entire trend of
variations, we extracted benign sample identification data for
a duration of 10 weeks, ranging from the first week to the tenth
week of the year 2024. In the absence of a definitive ground
truth for all real-world samples, we estimated the benign
software recall rate by calculating the ratio of detected benign
samples to the total number of PHP samples. As highlighted
in Figure 3, within a public cloud environment that receives
around 100 million new PHP samples daily, ASTBAR con-
sistently achieved a detection rate of approximately 97.63%
for benign samples. Weekly cross-identification comparisons
between ASTBAR and the active AV engine showed several
matches between 3,520 and 7,261. Such overlap suggested a
false positive by one of the systems. To pinpoint the origin
of false positives, we hired two security experts to manually
verify the samples where there were discrepancies between
the detection results of ASTBAR and AV. After an extensive
10-week evaluation by security experts, ASTBAR was found to
have an error rate of zero, all misidentifications attributed to
the false positive of the AV engine.

Summary. ➀ In the context of malware detection, the
value of ASTBAR lies in its ability to help AV Engines
significantly reduce false positives while maintaining the
recall rate of AV Engines. ➁ Over 1 year of observa-
tional data, ASTBAR consistently demonstrated robust-
ness against the evolution of benign samples, as no
decline in its recall rate was observed. This highlights
the effectiveness of ASTBAR’s design in mitigating the
impact of software evolution.

Run-time Performance. To evaluate the run-time perfor-
mance of ASTBAR, we randomly selected 100 million samples
over three days to measure the run-time of ASTBAR in its
actual deployment in an industrial environment. As described
in Table VI, 99.80% of PHP samples were processed in

Fig. 3: ASTBAR’s performance over real-world.

1 foreach ($post_params as $one_post_param) {
2 if (isset($_POST[$one_post_param])) {
3 $GLOBALS[$one_post_param] = $_POST[

$one_post_param];
4 }
5 }
6 if (! isset($export_type) || ! preg_match('/^[a-

zA-Z]+$/', $export_type)) {
7 $export_type = 'pdf';
8 }
9 PMA_DBI_select_db($db);

10 $path = PMA_securePath(ucfirst($export_type));
11 ......
12 require "libraries/schema/".$path.'

_Relation_Schema.class.php';
13 $obj_schema = eval("new PMA_".$path."

_Relation_Schema();");

Listing 4: False Positive of Taint Analysis.

1 second, with only 0.26% of the samples taking longer
than 1 second to process, and the longest processing time
recorded for a sample was 34 seconds. Notably, these times
encompass the phase of network transfer for sample download,
which suggests that the actual processing time of ASTBAR is
even shorter. ASTBAR rapidly constructs AST fragments of
samples through static analysis. This design inherently ensures
that ASTBAR is both scalable and exhibits excellent run-time
performance.

E. RQ4: Analysis of FP Sources

During the deployment of ASTBAR, we observed and
recorded the distribution of false positives in various AV
engines and conducted a detailed analysis to identify the root
causes of these false positives. As indicated in Table VII,
a significant proportion of false positives were attributed to
taint analysis and sandbox engines. Furthermore, based on
our observations, the engines demonstrated the strongest true
positive detection capabilities in real-world scenarios, aligning
with our conclusions in IV-B.
False Positive of Taint Analysis Engine. The code segment
in Listing 4 was flagged erroneously by the taint analysis
engine as containing a web shell. In fact, the $export_type
variable, sourced from user input ($_POST), is subjected to
stringent validation that confines it to alphabetic characters.
The existence of sanitizing features like PMA_securePath and
file existence checks further mitigate any associated risks.
Consequently, the overpropagation of the taint analysis engine
resulted in a false positive.



TABLE V: Comparison of ASTBAR and SOTA methods in enhancing AV technique performance. The baseline represents the
performance of the ShellSweep method on its own, while all other columns indicate the performance with benign software
identification methods applied in conjunction with ShellSweep.

Method Baseline ASTBAR (Ours) Tamer NiCad PHPCPD JSCPD
Param. Setting - Mode:SM Mode:LM Thresh:1.0 Thresh:0.8 Thresh:1.0 Thresh:0.8 - -

TP 48,412 48,412 48,405 47,838 46,174 47,436 47,355 48,282 47,895
Recall 96.70% 96.70% 96.69% 95.56% 92.23% 94.75% 94.59% 96.44% 95.67%

FP 103,416 53,313 49,655 79,023 71,793 96,965 95,860 99,578 103,330
FPR 96.76% 49.88% 46.46% 73.93% 67.17% 90.72% 89.69% 93.17% 96.68%
F1 47.96% 63.79% 65.35% 54.08% 54.96% 48.79% 49.00% 48.79% 47.59%

TABLE VI: Analysis of ASTBAR run-time performance.
Response Time (s) # Sample Percentage

(0,0.1] 94,283,874 94.26%
(0.1,1] 5,514,357 5.54%
(1,60] 201,768 0.20%

(60,+∞) 0 0.00%

TABLE VII: Types of FP via AV detection methods.
AV Engine Percentage of Total FP
Rule Engine 0.01%

Sandbox Engine 53.95%
Lexical Engine 1.25%

Taint Analysis Engine 36.36%
Knowledge Graph Engine 7.90%

False Positive of Sandbox Engine. Listing 5 shows a PHP
sample using the php://filter stream protocol, which theoreti-
cally allows user-controlled manipulation of data streams via
filter parameters. However, the inclusion path is hard-coded
(__DIR__ . "/bug74596_2.php"), preventing external influence
on the file to be executed. The hardcoded nature of the file path
negates any actual exploitability, leading to a false positive.

V. DISCUSSION

Additional Programming Languages. Our approach,
ASTBAR, is scalable and modular, making it adaptable to
other programming languages for false positive identification
in web shell detection. Using AST node documentation,
ASTBAR can be extended to languages such as JSP and
ASPX, addressing real-world needs such as those of cloud
service providers. However, due to PHP’s widespread use in
web development, we prioritized its implementation for PHP,
with plans to expand to other languages in the future.
Anomaly Detection. Our method has the potential to achieve
anomaly detection by recalling all benign samples according
to their characteristics, provided sufficient benign samples are
collected. In scenarios like cloud services, benign features
are more stable and enumerable compared to evolving mali-
cious features. However, data privacy restrictions limit access
to large-scale benign datasets, making anomaly detection a
promising direction for future work.

VI. RELATED WORK

Web Shell Detection. The rise of cloud computing has led to
the emergence of various server-side web shells [29], [30]. To
combat this, several automated techniques have been devel-
oped: MalMax [7]: Combines counterfactual and isolated exe-
cution to analyze dynamic program behavior, complementing

31 file_put_contents(__DIR__ . "/bug74596_2.php", "
ok\n");

32 ...
33 stream_filter_register("ufilter", "ufilter");
34 include "php://filter/read=ufilter/resource=" .

__DIR__ . "/bug74596_2.php";
35 ?>

Listing 5: False Positive of Sandbox Engine.

malicious identification. YODA [9]: Automates code analysis
to detect malicious behavior in WordPress plugins, agnostic
to specific attack types. TChecker [8]: Performs precise static
taint analysis to detect vulnerabilities in PHP applications,
including high-threat web malware. Despite their effectiveness,
these methods still struggle with false positives, underscoring
the need for ASTBAR to mitigate this issue.
Scalable Clone Detection Research. As software engineering
has advanced, the volume of code has grown, necessitating
precise analysis of software components [31]. Most scalable
clone detection methods are either text-based or token-based:
Token-based methods [32], [33]: Lexical analyzers are used to
extract token sequences for similarity calculations. Text-based
methods [34], [35]: Directly transform source code into strings
for comparison. Tools such as CCFinder [34] and Ishihara et
al. [36] focus on token standardization and hashing for clone
detection, while Tamer [28] uses basic block extraction and
subtree matching for fine-grained analysis. Despite their scal-
ability and speed, these tools often lack precision and recall.
In contrast, ASTBAR achieves high detection performance and
scalability, making it a superior choice for general code clone
detection.

VII. CONCLUSION

This study addresses the challenges of false positives and
false negatives in server-side malware detection by proposing
an extensible tree-based code similarity detection tool. The
method extracts the code’s AST, partitions subtrees using
heuristic algorithms, and constructs type node sequences by
traversing with depth-first search and expert knowledge, ul-
timately generating knowledge base fragments with contex-
tual execution information. Experimental results show that
ASTBAR achieves a 10.39% higher recall rate compared to
SOTA methods. In a 12-month real-world deployment, the av-
erage recall rate remained stable at 97.63%, helping antivirus
engines handle 700 false positive samples per day, significantly
reducing the risk of alarm fatigue.
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